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1. Introduction

The most widely used framework for studying in the continuum various dynamical ques-

tions that lie beyond perturbation theory are the Schwinger-Dyson equations (SDE) [1, 2].

This infinite system of coupled non-linear integral equations for all Green’s functions of

the theory is inherently non-perturbative, and captures the full content of the quantum

equations of motion. Even though these equations are derived by an expansion about the
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free-field vacuum, they finally make no reference to it, or to perturbation theory, and can

be used to address problems related to chiral symmetry breaking, dynamical mass genera-

tion, formation of bound states, and other non-perturbative effects [3, 4]. Since this system

involves an infinite hierarchy of equations, in practice one is severely limited in their use,

and the need for a self-consistent truncation scheme is evident. Devising such a scheme,

however, is far from trivial, even in the case of toy models [5, 6], and becomes far more

challenging when dealing with gauge theories. One of the central problems in this latter

context stems from the fact that the SDEs are built out of unphysical Green’s functions;

thus, the extraction of reliable physical information depends crucially on delicate all-order

cancellations, which may be inadvertently distorted in the process of the truncation. In

QED the issues related to the truncation of the SDE are very delicate [7 – 11], but the level

of complexity increases further when dealing with non-Abelian gauge theories [12], where

the ghost-infested Slavnov-Taylor identities (STI) [13] make time-honored methods, such

as the “gauge technique” [14], much more difficult to implement.

The truncation scheme based on the pinch technique (PT) [15] attempts to address

this problem at its root, introducing a drastic modification already at the level of the

building blocks of the SD series, namely the off-shell Green’s functions themselves. The PT

is a well-defined algorithm that exploits systematically the symmetries built into physical

observables, such as S-matrix elements or Wilson loops, in order to construct new, effective

Green’s functions, endowed with very special properties, generally associated with physical

observables. The basic observation, which essentially defines the PT, is that there exists a

fundamental cancellation between sets of diagrams with different kinematic properties, such

as self-energies, vertices, and boxes. This cancellation is driven by the underlying BRST

symmetry [16], and is triggered when a very particular subset of the longitudinal momenta

circulating inside vertex and box diagrams generate out of them (by “pinching” internal

lines) propagator-like terms. The latter are reassigned to conventional self-energy graphs,

in order to give rise to the aforementioned effective Green’s functions. These new Green’s

functions are independent of the gauge-fixing parameter [15, 17, 18, 20, 19], satisfy ghost-

free, QED-like Ward identities (WI) instead of the complicated STI [17, 18], display only

physical thresholds [22, 21], have correct analyticity properties [23], and are well-behaved

at high energies [24]. In addition, as has been shown recently [25], the form factors of

the one-loop PT three-gluon vertex [17] satisfy relations characteristic of supersymmetric

scattering amplitudes. For some recent application of the PT in non-commutative theories,

see [26, 27]. Returning to the SDEs, the final upshot of the PT program is to trade the

conventional SD series for another, written in terms of these new Green’s functions, and

then truncate it, keeping only a few terms in a “dressed-loop” expansion, maintaining at

the same time exact gauge-invariance [15] .

Due to various theoretical advances in recent years, the PT has been generalized to

all orders in perturbation theory, both for QCD [28] and the electroweak sector of the

Standard Model [29]. Of central importance in this context is the connection between

the PT and the Background Field Method (BFM) [30]. The latter is a special gauge-fixing

procedure that preserves the symmetry of the action under ordinary gauge transformations
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with respect to the background (classical) gauge field Âa
µ, while the quantum gauge fields,

Aa
µ, appearing in the loops, transform homogeneously under the gauge group [31]. As a

result, the background n-point functions satisfy QED-like all-order WIs. Note that the

BFM gives rise to special Feynman rules and a characteristic ghost sector. The connection

between PT and BFM [32], known to persist to all orders [28], affirms that the (gauge-

independent) PT effective n-point functions coincide with the (gauge-dependent) BFM

n-point functions provided that the latter are computed in the Feynman gauge.

Despite this progress, however, the truncation program outlined above is still incom-

plete. In fact, the direct implementation of the PT at the level of the SDE is an en-

tirely unexplored question. Of course, PT-inspired SDEs have been treated in the litera-

ture [15, 17, 33, 34], but rather than derived they have been postulated heuristically, based

on perturbative diagrammatic analysis. In the most recent work in this direction [35],

the SDE for the PT gluon propagator was formulated directly in the BFM [36]; there,

the connection between the PT and the BFM has been extrapolated without proof from

perturbation theory to the SDE. In the present paper we take the first step toward the

full implementation of the PT at the level of SDE. Specifically, we will carry out the PT

rearrangement for the SDE of scalar QED. This Abelian model captures a plethora of the

relevant conceptual issues, without the additional complications of non-Abelian theories,

and serves as an excellent toy theory for gaining valuable insight on the problem.

The application of the PT in an Abelian context might seem as a trivial exercise at

first, but this is certainly not the case: the self-energy of the charged scalar undergoes

non-trivial pinching, displaying a great deal of the characteristics known from the non-

Abelian studies. The reason for this may be traced back to a simple fact, namely the

momentum dependence of the bare vertex describing the interaction between the scalars

and the photon. This is exactly analogous to what happens with the three-gluon vertex,

which is the central object when carrying out the PT construction in QCD. According to

the standard PT methodology, from the scalar-photon vertex one isolates its “pinching”

part, i.e., the combination of momenta that trigger the standard elementary WI when

contracted with another such vertex. The terms generated from this WI are to be reassigned

and interpreted following exactly the standard PT philosophy, arriving eventually at a new

modified scalar self-energy.

The main result of this article is the following. The application of the PT at the level

of the SDEs obtained in the context of the covariant gauges for the conventional Green’s

functions, generates dynamically the corresponding SDEs governing the BFM Green’s

functions. Operationally this is accomplished following the basic rules established from the

perturbative analysis, sublemented by an additional crucial step. Specifically, when dealing

with the SDE for the scalar self-energy, one must pinch simultaneously the SDE’s governing

the full vertices. It is only then that the ensuing, highly non-trivial rearrangements conspire

to generate exactly the terms responsible for the conversion of the SDE for the conventional

scalar self-energy into the SDE for the BFM-PT self-energy.

Instrumental for the implementation of the procedure outlined above are three ingre-

dients: (i) the all-order WI relating the divergence of the full photon-scalar vertex with

the scalar self-energy; (ii) the all-order WI satisfied by the one-particle irreducible (1PI)
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multi-particle kernels appearing in the skeleton expansion of the SDE’s for the relevant full

vertices; (iii) a set of non-trivial identities [37], relating the BFM n-point functions to the

corresponding conventional n-point functions in the covariant renormalizable gauges, to all

orders in perturbation theory. These identities, to be referred to as Background-Quantum

identities (BQIs), furnish a concrete field-theoretic identification of the terms that are re-

moved during the pinching procedure from the conventional Green’s functions, in order to

generate their BFM counterparts [38].

The article is organized as follows. In section 2 we review some general characteristics

of scalar QED and its quantization in the conventional covariant gauges, present the all-

order WI’s for the two fundamental vertices, and derive formally the relevant BQIs relating

the scalar self-energy and vertices in the covariant gauges with the corresponding quantities

in the BFM. In section 3 we present a brief review of the PT applied to the case of scalar

QED, and carry out explicitly the construction of the PT scalar self-energy, at one and two

loops. In addition to setting up the notation and describing the general philosophy, this

presentation serves as a warm-up for the generalization of the method at the level of the

SDEs. Therefore, we pay particular attention to the general patterns appearing already at

two loops, with special emphasis on how to reorganize various diagrams in order to identify

the larger structures (Green’s functions or kernels) on which the pinching momenta act. In

section 4 we give a qualitative discussion of the general strategy we will follow when pinching

the SDEs, comment on the technical subtleties, and determine the necessary ingredients

for the implementation of this program. In section 5 we derive in detail the all-order WI

for two of the 1PI kernels appearing in the SDE’s. Section 6 contains the main thrust of

our paper: using the machinery developed in the previous section, the PT construction is

carried out explicitly for the SDE’s of scalar QED. In section 7 we present our conclusions

and discuss the generalization of this work to a non-Abelian context. Finally, the relevant

Feynman rules are presented in an appendix.

2. Scalar QED and its identities

In this section we present the Lagrangian of scalar QED and the procedure of its gauge-

fixing, in the context of both conventional renormalizable gauges and BFM. We derive

the all-order WI’s satisfied by the fundamental vertices of the theory, and useful identities

(BQI) relating the Green’s functions of the theory in the two aforementioned gauge-fixing

schemes.

2.1 Lagrangian and gauge fixing

We will concentrate on scalar QED, which describes a complex scalar field φ interacting

with the electromagnetic field Aµ. The Lagrangian density is

L = LI + LGF + LFPG, (2.1)

with LI the gauge invariant U(1) Lagrangian,

LI = −
1

4
FµνFµν + (Dµφ)† (Dµφ) − m2φ†φ +

λ

4
(φ†φ)2, (2.2)
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where the field strength is

Fµν = ∂µAν − ∂νAµ, (2.3)

and the covariant derivative is defined as

Dµ = ∂µ − igYφAµ, (2.4)

with g the coupling constant and Yφ the scalar field hypercharge (Yφ = 1). In general, the

(covariant) gauge fixing term and the Faddeev-Popov ghost can be written as

LGF =
ξ

2
B2 + BF , (2.5)

LFPG = −c̄sF . (2.6)

In the formulas above, F is the gauge fixing function, B is an auxiliary, non-dynamical

field that can be eliminated through its (trivial) equation of motion, c (c̄) is the ghost

(anti-ghost) field, while s is the BRST operator, with

sAµ = ∂µc sφ = igcφ,

sφ† = −igcφ† sc = 0,

sc̄ = B sB = 0. (2.7)

In view of the equivalence between the PT Green’s functions and the BFM ones at ξQ = 1

we will consider the following two gauge fixing procedures (the corresponding Feynman

rules relevant for our calculation are given in the appendix).

1. In the usual Rξ gauges, one chooses F = ∂µAµ, to get

LGF = −
1

2ξ
(∂µAµ)2, (2.8)

LFPG = −c̄∂2c. (2.9)

In this gauge the ghosts are, of course, decoupled and play no dynamical role.

2. In the case of the BFM, one splits the scalar field into a background part, φ̂, and

its quantum part, φ. Notice that the BRST variation of the background field will be

zero, but the latter will enter in the variation of the quantum one, i.e.,

sφ = igc(φ̂ + φ) sφ† = −igc(φ̂† + φ†) (2.10)

sφ̂ = 0 sφ̂† = 0. (2.11)

In this case the gauge fixing function is

F = ∂µAµ − igξ(φ̂†φ − φ†φ̂), (2.12)

which gives in turn

LGF = −
1

2ξ
(∂µAµ)2 + ig∂µAµ(φ̂†φ − φ†φ̂)

+
g2

2
ξ
[
(φ̂†φ)2 + (φ†φ̂)2 − 2φ̂†φφ†φ̂

]
, (2.13)

LFPG = −c̄∂2c − g2ξc̄
(
φ̂†cφ + 2φ̂†cφ̂ + φ†cφ̂

)
. (2.14)
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Φ Aµ φ c c̄ A∗
µ φ∗ c∗ c̄∗

gh(Φ) 0 0 1 -1 -1 -1 0 -2

Table 1: The ghost numbers of the fields and antifields in scalar QED.

Therefore, in the BFM ghosts are not decoupled. In order to obtain the full set of

Feynman rules in this gauge, one needs also to consider the extra terms coming from

the background-quantum splitting carried out inside the gauge invariant Lagrangian,

i.e., LI(φ, φ†) → LI(φ̂ + φ, φ̂† + φ†), see again the appendix.

2.2 Some fundamental identities

In this subsection we review briefly the Batalin-Vilkovisky formalism [39], which allows one

to get simultaneously both the WIs as well as the BQIs of our theory.

Let us then start by introducing for each field Φ appearing in the theory the corre-

sponding anti-field, to be denoted by Φ∗. The anti-field Φ∗ has opposite statistics with

respect to Φ; its ghost number, gh(Φ∗), is related to the ghost number gh(Φ) of the field

Φ by gh(Φ∗) = −1 − gh(Φ). The ghost numbers of the various fields and anti-fields are

summarized in table I. Next, we add to the original gauge invariant Lagrangian a term

coupling the anti-fields with the BRST variation of the corresponding fields, to get

LBV = LI + LBRST

= LI +
∑

Φ

Φ∗sΦ. (2.15)

As a consequence of the BRST invariance of the action and the nilpotency of the BRST

operator, the action Γ(0)[Φ,Φ∗] constructed from LBV, will satisfy the master equation

∫
d4x

∑

Φ

δΓ(0)

δΦ∗

δΓ(0)

δΦ
= 0. (2.16)

Since the anti-fields are external sources, we must constrain them to suitable values before

we use the action Γ(0) in S-matrix elements calculations [31]. To that end, we introduce an

arbitrary fermionic functional Ψ[Φ] (also referred to as “gauge fixing fermion”, for reasons

that will become clear shortly), such that

Φ∗ =
δΨ[Φ]

δΦ
. (2.17)

Then the action becomes

Γ(0)[φ, δΨ/δΦ] = Γ(0)[Φ] + (sΦ)
δΨ[Φ]

δΦ

= Γ(0)[Φ] + sΨ[Φ], (2.18)

and choosing the functional Ψ to satisfy the relation

sΨ =

∫
d4x (LGF + LFPG) , (2.19)
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we see that the action Γ(0) (obtained from LBV) is equivalent to the gauge fixed action

obtained from the original Lagrangian L of eq. (2.1). Furthermore, the antighost anti-field

c̄∗ and the multiplier B enter bi-linearly in the action, and one can write

Γ(0)[Φ,Φ∗] = Γ
(0)
min[Aµ, A∗

µ, φ, φ∗, φ†, φ∗†, c, c∗] − Bc̄∗, (2.20)

with Γ
(0)
min satisfying the master equation (2.16) by itself. In what follows we will restrict

our considerations to the minimal action, dropping the corresponding subscript.

The quantum corrected version of the master equation (2.16) is established in the form

of the WI functional

S(Γ)[Φ,Φ∗] =

∫
d4x

∑

Φ

δΓ

δΦ∗

δΓ

δΦ
= 0, (2.21)

where Γ[Φ,Φ∗] is now the effective action. The equation above must hold in any theory

with a unitary S-matrix and gauge-independent physical observables, and gives rise to the

complete set of the all-order WIs, via the repeated application of functional differentiations,

keeping in mind that: (i) S(Γ) has ghost charge 1; (ii) functions with non-zero ghost charge

vanish (since the ghost charge is a conserved quantity); (iii) the BRST transformation of

the gauge field is proportional to the ghost sAµ = ∂µc. Overall, these latter observations

imply that in order to extract non-zero identities from eq. (2.21) one needs to differentiate

the latter with respect to one ghost filed, or two ghost fields and one anti-field (the only

exception to this rule is when differentiating with respect to a ghost anti-field.) In particu-

lar, identities involving one or more gauge fields are obtained differentiating eq. (2.21) with

respect to the set of fields in which one gauge boson has been replaced by the corresponding

ghost field.

In the remainder of this section we will adopt for the n-point Green’s function the

notation

ΓΦ1Φ2...Φn−1Φn(p2, . . . , pn−1, pn) = in
δnΓ

δΦ1(p1)δΦ2(p2) · · · δΦn(pn)

∣∣∣∣
Φi=0

, (2.22)

with pi the in-going momentum of the Φi field. The momentum for the field Φ1 follows

from momentum conservation, and we will not write it explicitly.

2.2.1 Ward Identities

We begin with the STI for the photon-scalar-scalar vertex. From our previous discussion

follows that, for obtaining such an identity, one needs to consider the functional differen-

tiation
δ3S(Γ)

δφ†(p1)δφ(p2)δc(q)

∣∣∣∣
Φ=0

= 0 p1 + p2 + q = 0. (2.23)

Carrying out the functional differentiation we obtain the equation

ΓcA∗
µ
(q)ΓAµφ†φ(p1, p2) + Γφ†cφ∗(q, p2)Γφ†φ(p2) + Γφcφ∗†(q, p1)Γφφ†(p1) = 0 (2.24)

On the other hand, the Abelian nature of the theory, together with the decoupling of the

ghosts in the Rξ gauges, enforce the validity of the following (all order) equations (see also
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the appendix)

ΓcA∗
µ
(q) = Γ

(0)
cA∗

µ
(q) = −qµ,

Γφ†cφ∗(q, p2) = Γ
(0)

φ†cφ∗(q, p2) = g,

Γφcφ∗†(q, p1) = Γ
(0)

φcφ∗†(q, p1) = −g, (2.25)

which furnish the fundamental WI

qµΓAµφ†φ(p1, p2) = g
[
Γφφ†(p2) − Γφφ†(p1)

]
. (2.26)

Introducing the short-hand notation ΓAµφ†φ ≡ Γµ and Γφφ† ≡ S−1, we finally get

qµΓµ(p1, p2) = g
[
S−1(p2) − S−1(p1)

]
. (2.27)

Let us derive next the WI satisfied by the 4-point function ΓAµAνφ†φ. In this case we

need to consider the functional differentiation

δ4S(Γ)

δφ†(p1)δφ(p2)δAν(k)δc(q)

∣∣∣∣
Φ=0

= 0 p1 + p2 + k + q = 0. (2.28)

Carrying out the functional differentiation, and considering that, due to the decoupling of

the ghost fields, one has to all orders

ΓAνcA∗
µ

= 0 Γφ†φcA∗
µ

= 0,

Γφ†Aνcφ∗ = 0 ΓφAνcφ∗† = 0,

we obtain

ΓcA∗
µ
(q)ΓAµAνφ†φ(k, p1, p2) + Γφ†cφ∗(q, k + p2)Γφ†Aνφ(k, p2)

+ Γφcφ∗†(q, k + p1)ΓφAνφ†(k, p1) = 0. (2.29)

Then, using once again the results of eq. (2.25), one gets the final identity

qµΓAµAνφ†φ(k, p1, p2) = g
[
Γφ†Aνφ(k, p2) − ΓφAνφ†(k, p1)

]

= g
[
ΓAνφ†φ(−k − p2, p2) − ΓAνφ†φ(p1,−k − p1)

]
, (2.30)

which can be rewritten as

qµΓµν(k, p1, p2) = g [Γν(−k − p2, p2) − Γν(p1,−k − p1)] , (2.31)

where we have set ΓAµAνφ†φ ≡ Γµν .

2.2.2 Background quantum identities

Background quantum identities are identities that relate Green’s functions involving back-

ground fields to Green’s functions involving only quantum ones. Therefore, they are par-

ticularly useful in the PT context, since they allow for a direct comparison between PT

and BFM Green’s functions.
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To obtain such identities for scalar QED, we introduce a classical scalar field Ωφ and

its complex conjugate Ωφ†
, carrying the same quantum numbers as the scalar, but with

ghost charge +1. We then implement the equation of motion of the background fields at

the quantum level, by extending the BRST symmetry through the equations

sφ̂ = Ωφ sΩφ = 0,

sφ̂† = Ωφ†

sΩφ†

= 0. (2.32)

The dependence of the Green’s function on the background field is then controlled by

the modified STI functional

S ′(Γ′)[Φ,Φ∗] = S(Γ′)[Φ,Φ∗] +

∫
d4x

[
Ωφ

(
δΓ′

δφ̂
−

δΓ′

δφ

)
+ Ωφ†

(
δΓ′

δφ̂†
−

δΓ′

δφ†

)]

=

∫
d4x

{
δΓ′

δA∗
µ

δΓ′

δAµ
+

δΓ′

δc∗
δΓ′

δc
+

δΓ′

δφ∗

δΓ′

δφ†
+

δΓ′

δφ†∗

δΓ′

δφ

+

[
Ωφ

(
δΓ′

δφ̂
−

δΓ′

δφ

)
+ Ωφ†

(
δΓ′

δφ̂†
−

δΓ′

δφ†

)]}
, (2.33)

where Γ′ denotes the effective action that depends on the background sources (Γ ≡ Γ′|Ω=0).

Differentiation of the above functional with respect to background sources and back-

ground and/or quantum fields will then relate 1PI functions involving different back-

ground/quantum field content.

The first BQI we derive involves two background scalar fields. One begins by consid-

ering the functional differentiations

δ2S ′(Γ′)

δΩφ†(p1)δφ̂(q)

∣∣∣∣∣
Φ=0

= 0 q + p1 = 0,

δ2S ′(Γ′)

δΩφ†(p1)δφ(q)

∣∣∣∣
Φ=0

= 0 q + p1 = 0 (2.34)

which furnish the intermediate BQIs

Γbφbφ†(q) = Γbφφ†(q) + Γ
Ωφ†

φ∗(q)Γbφφ†(q) + Γ
Ωφ†

A∗
µ
(q)ΓbφAµ

(q), (2.35)

Γbφφ†(q) = Γφφ†(q) + ΓΩφφ∗†(q)Γφφ†(q) + ΓΩφA∗
µ
(q)Γφ†Aµ

(q). (2.36)

According to our previous discussion, in the above equation all Green’s function involving

ghost legs have dropped out (having ghost charge different from zero). The Abelian nature

of the theory enforces to all orders the identity

Γ
Ωφ†

A∗
µ
(q) = ΓΩφA∗

µ
(q) = 0, (2.37)

so that the BQI relating the background 1PI two-point function to the quantum one reads

Γbφbφ†(q) = [1 + Γ
Ωφ†

φ∗(q)]
2Γφφ†(q). (2.38)
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Introducing the auxiliary function G ≡ Γ
Ωφ†

φ∗ , and denoting Γbφbφ† ≡ Ŝ−1, we obtain the

BQI in its final form,

Ŝ−1(q) = [1 + G(q)]2S−1(q). (2.39)

Notice that, in the Abelian case, the 1PI Green’s function G has a particularly simple

expression, namely

iG(q) = = −g2

∫
[dk]

1

k2
S(k + q).

Ωφ†

(q)φ∗(q)

(2.40)

In the diagram above (and all those that follow) we use the graphic notation and the

Feynman rules described in the appendix, and denote with white (respectively black) blobs

connected (respectively one particle irreducible) Green’s functions.

Next, we need the BQI relating the trilinear vertex with all quantum fields to the

vertex where a (quantum) scalar field has been replaced by a background one. To this end,

we consider the functional differentiation

δ3S ′(Γ′)

δAµ(k1)δΩφ(q)δφ†(p1)

∣∣∣∣
Φ=0

= 0 q + p1 + k1 = 0. (2.41)

Then, taking into account that, for the model at hand, all functions involving the com-

bination ΩφA∗
µ are a fortiori 1PR, and therefore drop out from the identity, we find the

identity

Γ
Aµφ† bφ

(p1, q) =
[
1 + ΓΩφφ∗†(q)

]
ΓAµφ†φ(p1, q) + ΓAµΩφφ∗†(p1, q)Γφφ†(p1). (2.42)

Introducing the notation Γ̂µ ≡ Γ
Aµφ† bφ

and Gµ ≡ ΓAµΩφφ∗† , we can cast the above BQI in

a short-hand form

Γ̂µ(p1, q) = [1 + G(q)] Γµ(p1, q) + Gµ(p1, q)S
−1(p1). (2.43)

Notice that the function Gµ(q, p1) has the simple expression

iGµ(q, p1) = = g2

∫
[d`]

1

`2
S(` + q)S(` − p1)Γµ(p1 − `, ` + q).

Ωφ(q)φ∗†(p1)

Aµ(p2)

(2.44)

In order to obtain the BQI for the quadrilinear vertex one needs to consider the func-

tional differentiation

δ4S ′(Γ′)

δAµ(k1)δAν(k2)δΩφ(q)δφ†(p1)

∣∣∣∣
Φ=0

= 0 q + p1 + k1 + k2 = 0, (2.45)

which provides the BQI

Γ
AµAνφ† bφ

(k2, p1, q) =
[
1 + ΓΩφφ∗†(q)

]
ΓAµAνφ†φ(k2, p1, q) + ΓAµAνΩφφ∗†(k2, q, p1)Γφ†φ(p1)

+ ΓAµΩφφ∗†(q, k2 + p1)ΓAνφ†φ(p1,−p1 − k2)

+ ΓAνΩφφ∗†(q, k1 + p1)ΓAµφ†φ(p1,−p1 − k1). (2.46)
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Introducing the notation Γ̂µν ≡ Γ
AµAνφ† bφ

and Gµν ≡ ΓAµAνΩφφ∗† we can rewrite the above

BQI in its final form, namely

Γ̂µν(k2, p1, q) = [1 + G(q)] Γµν(k2, p1, q) + Gµν(k2, q, p1)S
−1(p1)

+ Gµ(q, k2 + p1)Γν(p1,−p1 − k2) + Gν(q, k1 + p1)Γµ(p1,−p1 − k1).(2.47)

The equation for the auxiliary function Gµν is given by

iGµν(k2, q, p1) = = g2

∫
[d`]

1

`2
S(` + q)S(` − p1)Cµν(k2, p1 − `, ` + q),

Ωφ(q)φ∗†(p1)

Aν(k2)Aµ(k1)

(2.48)

where Cµν is the four-particle connected Green’s function with two photons and two scalar

entering, whose properties and WI will be discussed in detail later.

Finally, we report for completeness the WI satisfied by the auxiliary functions Gµ

and Gµν . Contracting directly their defining equations, eq. (2.45) and eq. (2.48), using

eq. (2.27), and the WI for the kernel Cµν derived in section 5, eq. (5.12), we obtain

pµ
2 Gµ(q, p1) = g [G(q) − G(p1)],

kµ
1 Gµν(k2, q, p1) = g [Gν(q + k1, p1) − Gν(q, p1 + k1)]. (2.49)

3. PT in scalar QED: General considerations

In this section we present the general methodology for constructing PT self-energies in

the case of scalar QED. The object of interest will be the scalar self-energy: due to the

momenta appearing in the elementary vertices, the PT algorithm allows the conversion of

the standard scalar self-energy into the BFM scalar self-energy, e.g., with a background

scalar entering and exiting. Note that the photon self-energy remains intact, because no WI

can be triggered within the corresponding graphs defining it. After outlining the general

philosophy and setting up some useful notation, we will proceed to review the construction

of PT scalar self-energy at one and two loops.

The general idea of the PT is to identify, following a very strict procedure, propagator-

like contributions contained in vertex- and box-diagrams, and reassign them to the con-

ventional self-energy graphs [15], thus generating new, effective Green’s functions, with

special properties. This construction is carried out inside an S-matrix element, or some

other gauge-invariant observable; the underlying symmetries, most notably the BRST sym-

metry, enforce crucial cancellations, making the aforementioned construction possible. The

“S-matrix” PT described above has an equivalent version, known as “intrinsic” PT [17].

According to it, one identifies the parts of the self-energy that will cancel against the pinch-

ing terms coming from vertices and boxes, and discards them directly from the self-energy:

what remains is the answer. The intrinsic PT is operationally more economical, and mini-

mizes the need of embedding the procedure into a physical observable; in what follows we

will adopt this latter approach.
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Aµ(k)

φ†(k + q)

φ(q)

Aµ(k)

φ†(k + q)

φ̂(q)
= + ΓP

µ(q,−q − k)

Figure 1: The PT decomposition of the elementary vertex.

The rearangments of graphs mentioned above are realized when judiciously selected

longitudinal momenta, circulating inside the Feynman graphs, trigger elementary WI’s.

These momenta stem either from the longitudinal (gauge-dependent) parts of the propa-

gators, or from parts of the momenta carried by the “external” elementary vertices [40]

i.e., vertices where the physical momentum enters or leaves the corresponding diagram.

The construction is simplified enormously in the context of the renormalizable gauges, if

one chooses directly the Feynman gauge [17]. This choice eliminates all pinching momenta,

other than those stemming from the external vertices. Such a choice constitutes no loss of

generality, as has been explained in [29], by establishing a close correspondence between

the PT and the powerful Nielsen identities [41] that control the gauge-dependence of the

conventional Green’s functions.

Let us now turn to the case of scalar QED, and outline the construction of the PT

scalar self-energy. The bare photon propagator, ∆
(0)
µν (k), assumes the form

∆(0)
µν (k) = −

i

k2

[
gµν − (1 − ξ)

kµkν

k2

]
, (3.1)

and, following the previous discussion, we will choose directly the Feynman gauge, ξ = 1.

Therefore, the only pinching momenta will originate from the bare (tree-level) scalar-scalar-

photon vertex Γ
(0)
µ . According to the PT, this latter vertex is to be split into two parts:

(i) a part, to be denoted by ΓP, which contains longitudinal momenta, i.e., momenta that

can be contracted with the vertex on the other side of the diagram, thus triggering an

elementary WI, and (ii) the remainder, to be denoted by ΓF, which coincides with the

corresponding tree-level vertex in the BFM; in particular, the background field is to be

identified with the field carrying the external momentum. In the case of the scalar vertex

Γ
(0)
µ (q,−q−k), the only longitudinal momentum is kµ, irrigating the photon line; therefore,

the PT decomposition of the vertex described above amounts to (see also figure 1)

Γ(0)
µ (q,−q − k) = ΓF

µ(q,−q − k) + ΓP
µ(q,−q − k), (3.2)

with

iΓ(0)
µ (q,−q − k) = −ig(2q + k)µ ,

iΓF
µ(q,−q − k) = −2igqµ ,

iΓP
µ(q,−q − k) = −igkµ . (3.3)

– 12 –



J
H
E
P
0
3
(
2
0
0
7
)
0
4
1

(a) (c)(b)

S(0)(k + q) φ†(−q)

∆
(0)
µν (k)

φ†(−q)φ(q) φ†(−q)φ(q) φ(q)

S(0)(k) ∆
(0)
µν (k)

Figure 2: The diagrams which, when evaluated using the corresponding Feynman rules (see ap-

pendix, figure 10), contribute at one loop to the conventional and BFM scalar self-energies, Σ(1)(q)

and Σ̂(1)(q), respectively.

For the case of the scalar self-energy, the above splitting is to be carried out to the two

external vertices, where the physical momentum q is entering and exiting: Specifically, we

write

Γ(0)
µ [. . .]Γ(0)

ν = ΓF
µ[. . .]ΓF

ν + ΓP
µ [. . .]Γ(0)

ν + Γ(0)
µ [. . .]ΓP

ν − ΓP
µ [. . .]ΓP

ν . (3.4)

where [. . .] denotes the rest of the diagram appearing between the two vertices. In what

follows we will use the short-hand notation [dk] = µεddk/(2π)d, with d = 4 − ε, the

dimension of space-time, and µ the ’t Hooft mass; also, we will use roman letters to label

Feynman diagrams computed in the Rξ gauge, and roman letters with hats when the same

diagram is computed in the BFM gauge. For the perturbative analysis of this section, we

will employ the scalar self-energy, Σ, related to the inverse scalar propagator by

S−1(q) = q2 − m2 + iΣ(q), (3.5)

and the same relation applies for Ŝ−1 and Σ̂. In addition, we will use S−1
0 (q) = q2 − m2.

3.1 One-loop case

The one-loop case is particularly simple. In fact, recall that we are working in the Feynman

gauge; then, since graph (b) of figure 2 can not possibly provide any pinching momenta,

while graph (c) is zero in perturbation theory [due to eq. (3.8) below], one needs to con-

centrate only on diagram (a). Then, by applying to the latter the decomposition described

in eq. (3.4), one should be able to generate graph (â), together with the rest of the terms

appearing in the one-loop version of the BQI of eq. (2.39), namely

Σ(1)(q) = Σ̂(1)(q) − 2G(1)(q)S−1
0 (q). (3.6)

Notice that, in the one loop case, the symbol [. . .] appearing in eq. (3.4) is given by the

expression −igµνS0(q + k)/k2. In what follows we will denote symbolically the application

of eq. (3.4) on (a) as

(a) = (a)FF + (a)P0 + (a)0P − (a)PP. (3.7)

The notation introduced above will be used extensively in the rest of the paper.

The term (a)FF on the r.h.s. of (3.7) represents already graph (â) of figure 2, since

Γ
(0)
µ (q,−q − k) coincides (by construction) with the tree-level φ̂φ†A vertex. Then, using

the tree-level version of the all-order WI given in eq. (2.27), it is elementary to demonstrate
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that the second and third term on the r.h.s. of (3.7) give each rise to a term S−1
0 (q)G(1)(q),

with G(1) the one-loop version of eq. (2.40). The last term, (a)PP, gives rise to a seagull-like

graph in which the four scalar vertex is proportional to the gauge coupling g2; it is this

latter term combined with diagram (b) that will give rise to the characteristic BFM vertex

φ†φφ̂†φ̂ ∝ (λ − g2) (see the appendix for its exact Feynman rule) and therefore to the

diagram (b̂).

We end by observing that in carrying out the construction above we have used the

dimensional regularization result
∫
[dk]/k2 = 0, a special case of the more general formula

∫
[dk]

k2
lnN (k2) = 0 , N = 0, 1, 2, . . . (3.8)

which guarantees the masslessness of the photon to all orders in perturbation theory [and

that graph (c) is zero as well].

3.2 Two-loop case

The two-loop case is of course more involved; in fact, it has sufficient level of complexity to

capture all central issues one needs to address for the all-order perturbative construction,

as well as the generalization at the level of the SDEs, to be presented in the next sections.

As in the one-loop case, the idea is again to start out with the graphs defining the

conventional two-loop scalar self-energy Σ(2), and to generate, via the application of the

PT rules, the diagrams of the corresponding two-loop BFM self-energy Σ̂(2) together with

all additional terms enforcing the BQI of (2.39) at two loops. In particular, the two-loop

version of eq. (2.39) is given by

Σ(2)(q) = Σ̂(2)(q) − 2G(1)(q)Σ(1)(q) − 2G(2)(q)S−1
0 (q) − [G(1)(q)]2S−1

0 (q). (3.9)

Before entering into the details, we report the form of the all-order photon propagator,

∆µν(k), in the Feynman gauge. We have

∆µν(k) = −i

[
∆(k2)Pµν(k) +

kµkν

k4

]
, ∆(k2) =

1

k2 + iΠ(k2)
, (3.10)

where Pµν(k) = gµν−kµkν/k
2 denotes the dimensionless projection operator, and Πµν(k) =

Π(k2)Pµν(k) is the transverse vacuum polarization.

The two-loop PT construction proceeds then as follows.

(i) Σ(2) is given by the sum of the one-particle irreducible (1PI) diagrams (a)–(j), shown

in figure 3; on the other hand, Σ̂(2) is given by the sum (a)–(k) (in each case one would

be of course using the corresponding set of Feynman rules). Notice in particular that

diagram (k) is due to the characteristic BFM vertex φ̂φ†c̄c, shown in the appendix.

(ii) Diagrams (a)–(j) of Σ(2) may be classified into three categories, according to the

number of external φ†φA vertices they contain: type A diagrams with two such

vertices – graphs (a), (b), (f), and (g); type B diagrams with one such vertex –

graphs (c) and (d); type C diagrams with no such vertex – graphs (e), (h) (i) and
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(c)

(d)

(a) (b)

(h)

(e)

(i)

(k)

(g)

(f)

(j)

Figure 3: The two-loop Feynman diagrams contributing to Σ(2) and Σ̂(2): the topologies (a)–(j),

evaluated using the corresponding set of Feynman rules, contribute to both, whereas (k) only to

the latter. Gray blobs represent the one-loop scalar and photon self-energy

(j). Then, to the type A diagrams one applies the rearrangement given in eq. (3.4),

whereas for the type B one simply carries out the PT splitting of eq. (3.2) to their

single external vertex. Finally, type C diagrams remain unchanged, as they do not

contain any pinching momentum.

(iii) In type A graphs, the terms containing ΓF[. . .]ΓF give rise to the corresponding BFM

diagrams, to be denoted by (â), (b̂), (̂f), and (ĝ). Similarly, the terms containing ΓF

in type B graphs generate the corresponding BFM diagrams (̂c) and (d̂). Thus,

(x)FF = (x̂) x = a,b, f, g

(y)F = (ŷ) y = c,d (3.11)

Notice that, due to the transversality of the photon self-energy, kµΠ
(1)
µν (k) = 0, di-

agram (g) gives no further contributions, i.e. it has been converted into the corre-

sponding diagram (ĝ) for free. As for diagram (f), using the tree-level version of

eq. (2.27), we have:

(f)P0 + (f)0P = 2 g2

∫
[dk]

k2
S0(k + q)Σ(1)(k + q) − 2G(2)(q)S−1

0 (q)

(f)PP = −g2

∫
[dk] Σ(1)(k). (3.12)

(iv) We continue with the evaluation of the pinching parts of the remaining graphs con-

sidered in (iii). Combining the two type A graphs (a) and (b) with the two type B
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ones, we may organize the various contributions such that the two ΓP are each acting

on the full one-loop φ†φA vertex Γ
(1)
µ , thus triggering the one-loop version of the WI

of eq. (2.27). Thus, the ΓP on the left hand side (l.h.s. ) of diagrams (a), (b), and

(d), will act on Γ
(1)
µ , and exactly the same will happen with the ΓP on the right hand

side (r.h.s. ) of diagrams (a), (b), and (c). Specifically,

2
[
(a)P0 + (b)P0 + (d)P

]
= 2g

∫
[dk]

k2
S0(k + q) kµΓµ(−q, k + q)

= −2g2

∫
[dk]

k2
S0(k + q)Σ(1)(k + q) − 2G(1)(q)Σ(1)(q),

(3.13)

where the multiplicative factor of 2 accounts for the equal contribution from the sym-

metric combination (a)0P +(b)0P +(c)P. Finally, it is straightforward to demonstrate

that

(a)PP + (b)PP = −(k) +
[
G(1)(q)

]2
S−1

0 (q). (3.14)

Evidently, diagram (k), originating from the special BFM ghost sector, has been

generated dynamically from the rearrangement of diagrams evaluated with Feynman

rules that do not involve ghost interactions. [To get the signs to work out, remember

the minus sign in front of the ΓP[. . .]ΓP term, and the extra minus sign in (k) due to

the ghost loop.]

(v) Finally, taking into account the cancellation of the first terms on the r.h.s. of eqs. (3.12)

and (3.13), we conclude that all diagrams contributing to Σ̂(2) have been generated by

pinching internally Σ(2), together with all terms on the r.h.s. of (3.9); this concludes

the two-loop construction of the PT scalar self-energy.

As has been explained in detail in the literature (for the more complicated non-Abelian

case) [40], all terms in eq. (3.9) containing the auxiliary function G will eventually cancel

exactly in an S-matrix element (or other physical observable) against similar contributions

coming from the conversion of the two-loop conventional vertex Γ
(2)
µ to the PT-BFM vertex

Γ̂
(2)
µ , [viz. eq. (2.43)], together with analogous terms originating from the conversion of the

1PR strings (i.e. products of conventional one-loop vertices and self-energies) into PT

strings, e.g., 1PR strings containing instead products of one-loop PT vertices and self-

energies.

4. Pinching Schwinger-Dyson equations

We now enter into the main issue of this article, namely how to carry out the PT construc-

tion at the level of SDE. In this section we will present a general qualitative discussion of the

main questions involved, the strategy that will be employed, and the field-theoretic ingre-

dients necessary for its implementation. The actual detailed construction will be presented

in section 6.

The SDE may be derived following a diagrammatic analysis in the spirit of [42], or

formally from the generating functional of the theory, as shown, for example, in [43]. For
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the case of scalar QED, the SDE for the scalar propagator S is shown in figure 4; it

essentially amounts to dressing with vertex and self-energy corrections all skeleton graphs

contributing to S. In scalar QED the skeleton graphs of the scalar (and photon) propagator

are exhausted at two loops; this is equivalent to saying that, with the elementary vertices

at hand, any higher order graph is bound to be a radiative correction (propagator or

vertex “dressing”) to the one- and two-loop graphs. That this is so may be verified by

direct diagrammatic analysis, analogous to the one presented in [42] for the case of spinor

QED. In general, the number of skeleton graphs depends on the type of elementary vertices

characterizing the theory. Thus, in spinor QED the fermion and electron self-energies have

a single skeleton graph, the analogue of graph (4a); the same is true for a gφ3 theory. In

both cases the reason is that there exists only one fundamental interaction vertex. Instead,

in the case of a gφ3 + λφ4 theory, of scalar QED, and of QCD, due to the presence of

interaction vertices involving four fields, two-loop skeleton graphs exist; for example, no

radiative correction to graph (2a) could possibly give rise to the graphs (3c) and (3e).

Clearly, field theories with elementary vertices involving more than four fields have self-

energy skeleton graphs beyond two loops.

There are three fundamental (fully dressed, all-order) vertices appearing in the SDE

of S, corresponding to the couplings ∂µφ†φAµ, φ†φAµAµ, and φ†φφ†φ, to be denoted by

Γµ, Γµν , and Γ, respectively. The corresponding SDEs are shown in figure 5. Their general

structure may be described as follows: A vertex-leg is singled out (in our case the scalar

leg carrying momentum q), and all possible tree-level vertices involving this field (leg)

are written down. Then, the fields exiting from these tree-level vertices are either (i) all

connected with the remaining vertex-legs through appropriate multi-particle kernels, or ( ii)

one of them is directly identified with one of the vertex-legs, whereas the rest is connected to

the remaining vertex-legs through an appropriate kernel or full vertex. The various kernels

involved (to be denoted in what follows as Kµν and Kµνρ) are connected, and, in addition,

1PI with respect to cuts involving only a physical momentum; this is tantamount to saying

that these kernels do not contain graphs that could become disconnected by cutting a

single line that is irrigated exclusively by one of the external, (“physical” as opposed to

“virtual”) momenta entering into the vertex. It is important to emphasize that there is a

finite number of distinct n-particle kernels appearing in the SDE for the vertices of figure 5.

Specifically, the SDE of a vertex with m-fields (m = 3, 4, in our case) will involve all kernels

with n ≤ m + 2. To see with an example why this must be so, consider the SDE of Γµ

in figure5, and let us add one additional leg to the 5-particle kernel appearing either in

(e) or in (h). Since the number of external legs is fixed, this extra leg must be attached

to the rest of the diagram through an internal elementary vertex. The resulting graph,

however, will be nothing but a radiative correction to one of the graphs containing the

kernels with n ≤ 5; therefore, its inclusion would constitute overcounting. Notice finally

that we do not consider the SDE for the photon propagator, because in scalar QED it

remains completely inert in the PT rearrangement (the most direct way to see this is by

noticing that all couplings involving a conventional photon coincide with those containing

a background photon).

The key observations that allow for the extension of the PT algorithm at the level of
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iS
−1

=
−1

(a) (b) (c)

(v) (z)(w)

+ ++

+++

Figure 4: Schwinger-Dyson equations for the scalar self-energy iS−1(q). The charge flow is not

shown. Here black blobs represent 1PI Green’s functions (Γµ, Γµν and Γ), and white blobs connected

Green’s functions (∆µν and S).

the SDE of the theory are then the following.

(i) In order to carry out the PT construction for the SDE at hand, it is important to first

identify the origin of the pinching momenta (i.e., type A and B diagrams), and then

the structures (vertices, kernels, etc) these momenta will be acting upon. Let us focus

for concreteness on the SDE for the scalar propagator S. To determine the pinching

momenta, we apply the same criterion as in the perturbative case, namely we carry

out the PT decomposition to the “external” vertices. Looking at the diagrams of

figure 4, it is clear that the bare vertex on the very left of diagram (a) should be

decomposed according to eq. (3.2); what is less clear perhaps is how to implement

the subsequent splitting described in eq. (3.4), or in other words, identify the second

external vertex to be decomposed. The perturbative examples studied in the previous

section suggest that the second external vertex resides inside the black blob denoting

the full trilinear vertex Γµ in (a); thus, in order to implement eq. (3.4) one must

“unwrap” Γµ. This is accomplished by considering the SD for Γµ itself (see figure 5),

which contains indeed tree-level vertices Γ
(0)
µ , on its r.h.s. (the first two terms). Then,

one must think of the r.h.s. of this latter SDE as having been inserted in (a), instead

of Γµ, and carry out eq. (3.2) on the tree-level vertices Γ
(0)
µ now appearing explicitly

on the right of (a), see, e.g., figure 7.

(ii) After having settled the question of how to identify type A diagrams and how to

carry out the implementation of eq. (3.4) in the presence of a full trilinear vertex,

the next question is what the result of this operation will be, and in particular the

contributions of the terms ΓP
µ [. . .]Γ

(0)
ν , Γ

(0)
µ [. . .]ΓP

ν , and ΓP
µ [. . .]ΓP

ν . It is clear that the

ΓP originating from the tree-level vertex on the left of (a) will trigger directly the WI

of eq. (2.27), since it acts on a full Γµ. The result of the action of the ΓP coming from

the other side is, however, less transparent. Of course, our perturbative experience

tells us that ΓP
µ [. . .]Γ

(0)
ν and Γ

(0)
µ [. . .]ΓP

ν should give identical contributions; however,

unlike the perturbative case where the symmetry of the situation is manifest, now one

has to demonstrate that this is indeed the case. The way this is done is by noticing

that, just as happened in the two-loop case where (a)0P was combined with (b)0P and
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iΓ =

(n)

iΓµν =

(i)

++

+

(g)

+ ++

(d) (e) (f)

iΓµ =

+

(g)

+

(h)

(l)

(k)

+

(m)

+ ++

++

(j)

(o) (p)

(q) (r) (s)

+

+

Figure 5: Schwinger-Dyson equations for the three fundamental vertices, iΓµ(p1, p2),

iΓµν(k, p1, p2) and iΓ(p1, p2, p3). As before, black blobs represent 1PI Green’s functions (Γµ),

white blobs connected Green’s functions (∆µν and S), and white blobs with a black center denote

the various kernels.

(c)P to generate Γ
(1)
µ , now one has to consider the analogous contributions from graphs

(b), (c), and (w) of figure 4. Specifically, one must carry out the PT decomposition on

the corresponding full vertices (black “blobs”), appearing on the very right of these

graphs; this is accomplished again by unwrapping them, invoking their own SDE’s,

and carrying out eq. (3.2) on the tree-level trilinear vertices appearing on their r.h.s.

. The end-result of this will be that the ΓP coming from the right will be acting on

a set of diagrams that will be precisely the r.h.s. of the SDE for Γµ; thus, the WI of
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eq. (2.27) will be triggered again, as expected.

(iii) Next we turn to the term ΓP
µ [. . .]ΓP

ν . It should be clear from the two-loop construction,

that what is contained in [. . . ] of (a) and (b) in figure 3 is nothing but the tree-level

1PI kernel containing two scalars and two photons, i.e., K
(0)
µν . So, what one is actually

computing at two-loop in order to arrive at eq. (3.14) is the tree-level WI for Kµν .

This observation persists at the level of the propagator SDE: to determine ΓP
µ [. . .]ΓP

ν

one must find the result of fully contracting Kµν by the corresponding momenta

carried by the two photons entering.

(iv) Turning to the SD equations for the vertices, let us first observe that the PT pro-

cedure can be implemented by simply carrying out the PT decomposition to the

corresponding vertices Γ
(0)
µ appearing on the corresponding r.h.s. . Thus, for the case

of Γµ one must decompose the Γ
(0)
µ appearing in graph (d), and determine the action

of the longitudinal momentum on the kernel Kµν . For the case of Γµν one must do

the same in graph (i), and thus determine the action of the longitudinal momentum

coming from ΓP
µ on the five-particle (three photons and two scalars) kernel Kµνρ.

(v) Let us also emphasize that, for the purpose of pinching the propagator SDE alone, one

does not need the WIs for the multi-particle kernels appearing in the various SDEs,

other than Kµν . Indeed, as has been outlined above, when the relevant contributions

from the vertices are inserted into the SDE of S, and are appropriately combined

with other graphs, the pinching momentum acts finally on a full Γµ, triggering its

known WI. The need for the WI satisfied by Kµνρ, etc. arises only if one decides

to pinch in addition the SDEs for Γµ, Γµν , and Γ. In section 6 we will pinch the

SDE for Γµ and Γµν , but will skip the case of the four-scalar vertex Γ; the latter

is straightforward but tedious, and presents limited conceptual or practical interest.

Thus, the only WIs needed for our purposes are those for the kernels Kµν and Kµνρ.

Summarizing, we have seen that the PT construction can be carried out at the level of

the SDE, when appropriate adjustments to the perturbative methodology are implemented.

In particular, in the construction of the PT scalar self-energy S(q), in addition to its own

SDE, one must simultaneously consider the SDE for the full vertices involved, manipulating

them appropriately. Furthermore, it has become clear that one needs to derive closed

expressions for the all-order WI satisfied by 1PI multi-particle kernels. This question will

be addressed in detail in the next section.

5. Ward identities for kernels

In this section we will derive the WI needed for carrying out the PT construction for the

SDEs of S, Γµ, and Γµν . As discussed above, this would require the WI for the kernels

Kµν and Kµνρ appearing in them. Of course, in the context of the Abelian theory that

we consider, the tree-level WIs ought to generalize naively to all orders, with no ghost

contributions. Thus, as a short-cut, one could simply derive the tree-level results and

– 20 –



J
H
E
P
0
3
(
2
0
0
7
)
0
4
1

postulate their validity to all orders. Instead we will derive the relevant all-order WIs

formally, not only for completeness, but also in order to establish the necessary theoretical

framework for addressing the same question in the more complicated case of non-Abelian

theories.

The main subtlety involved in this treatment stems from the fact that the standard

techniques furnish WIs for the connected kernels instead of the 1PI ones (in the sense

described in the previous section), i.e., for Cµν instead of the 1PI Kµν appearing in the

SDEs. Therefore, in order to obtain the desired results, one must properly account for

the 1PR terms, and subtract their contributions from the WIs derived for the connected

kernels C.

In order to determine formally the all-order WI satisfied by C kernels, we proceed as

described in [43]. We start by considering the Lagrangian of eq. (2.2); as a consequence of

its invariance under the gauge transformations

φ(x) → eiα(x)φ(x), φ†(x) → e−iα(x)φ†(x), Aµ → Aµ +
1

g
∂µα(x), (5.1)

one has the conservation of the current

Jρ(x) = i : φ†(x)
←→

∂ρ φ(x) : +2g : Aρ(x)φ†(x)φ(x) :, ∂ρJρ(x) = 0. (5.2)

Then, one can derive WIs relating Green’s functions involving a single current operator

and an arbitrary number of scalar and photon fields, as a result of current conservation

and the fact that Green’s functions are expressed as time-ordered products in Minkowski

space. Specifically, one has that

∂ρ
x〈0|TJρ(x)

n∏

i=1

Aρi
(zi)

m∏

j=1

φ†(yj)φ(xj)|0〉

=

n∑

k=1

〈0|T [J0(x), Aρk
(zk)]δ(x0 − z0

k)

n∏

i=1, i6=k

Aρi
(zi)

m∏

j=1

φ†(yj)φ(xj)|0〉

+

m∑

k=1

〈0|T

n∏

i=1

Aρi
(zi)

{
[J0(x), φ†(yk)]δ(x

0 − y0
k)φ(xk) + φ†(yk)[J0(x), φ(xk)]δ(x0 − x0

k)
}
×

×

m∏

j=1, j 6=k

φ†(yj)φ(xj)|0〉, (5.3)

where the term containing ∂ρJρ have been set to zero. On the other hand, canonical

equal-time commutation relations (which ensure charge conservation) imply
[
J0(x), φ(x′)

]
δ(x0 − x′0) = gφ(x)δ4(x − x′),

[
J0(x), φ†(x′)

]
δ(x0 − x′0) = −gφ†(x)δ4(x − x′),

[
J0(x), Aρ(x

′)
]
δ(x0 − x′0) = 0. (5.4)

We arrive then at the following general WI

∂ρ
x〈0|TJρ(x)

n∏

i=1

Aρi
(zi)

m∏

j=1

φ†(yj)φ(xj)|0〉
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−
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−=

ρ

−=

φ†φ
p2 p1

k
`ρ

µ µ

φ†φ
p2 p1

k2
`

k1
ρ

ν
µ

ρ
ν

µ
ρ µ ν ρ µ ν

ρ µ

Figure 6: The four- and five-particle kernels Kρµ(k, p1, p2) and Kρµν(k1, k2, p1, p2) appearing in

the SDEs, and their relations with the corresponding amputated connected Green’s function Cρµ

and Cρµν and 1PI Green’s functions Γµ and Γµν .

= −g〈0|T
n∏

i=1

Aρi
(zi)

m∏

j=1

φ†(yj)φ(xj)|0〉
m∑

k=1

[
δ4(x − yk) − δ4(x − xk)

]
. (5.5)

This identity constitutes our starting point for deriving the WIs satisfied by the SD

kernels Kµν and Kµνρ.

5.1 Four particle kernel

The first case of interest for us is when n = 2 and m = 1, i.e., the photon–photon–scalar–

scalar scattering kernel, defined as

∫
d4x d4x1 d4y1 d4z1e

i(p1·y1+p2·x1+k·z1−`·x)〈0|TJρ(x)Aβ(z1)φ
†(y1)φ(x1)|0〉i∆

(0)
ρα (`)

= (2π)4δ4(k + p1 + p2 − `)C̃αβ(k, p1, p2). (5.6)

Contraction with `α gives

(2π)4δ4(k + p1 + p2 − `)`αC̃αβ(k, p1, p2)

= −
1

`2

∫
d4x d4x1 d4y1 d4z1e

i(p1·y1+p2·x1+k·z1−`·x)∂x
ρ 〈0|TJρ(x)Aβ(z1)φ

†(y1)φ(x1)|0〉,(5.7)

and therefore, using eq. (5.5) with n = 2 and m = 1, we get

(2π)4δ4(k + p1 + p2 − `)`µC̃αβ(k, p1, p2)

=
1

`2

∫
d4x1 d4y1 d4z1 ei[(p1−`)·y1+p2·x1+k·z1]g〈0|TAβ(z1)φ

†(y1)φ(x1)|0〉

−
1

`2

∫
d4x1 d4y1 d4z1 ei[(p2−`)·x1+p1·y1+k·z1]g〈0|TAβ(z1)φ

†(y1)φ(x1)|0〉. (5.8)
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Finally, defining the photon–scalar–scalar kernel C̃β as

−i(2π)4δ4(p1 + p2 − k)C̃β(p1, p2)

=

∫
d4x d4x1 d4y1 ei(p1·y1+p2·x1−k·x)〈0|TAβ(x)φ†(y1)φ(x1)|0〉, (5.9)

and introducing the amputated kernels

C̃αβ(k, p1, p2) = i∆αρ(`)i∆βµ(k)iS(p1)iS(p2)C
ρµ(k, p1, p2),

C̃β(p2, p1) = i∆βµ(k)iS(p1)iS(p2)Γ
µ(p2, p1), (5.10)

we obtain the required WI,

`ρCρµ(k, p1, p2) = g
[
S−1(p1)S(p1 − `)Γµ(p1 − `, p2) − S−1(p2 − `)S(p2)Γµ(p1, p2 − `)

]
,

(5.11)

or, making use of momentum conservation,

`ρCρµ(k, p1, p2)=g
[
S−1(p1)S(p2 + k)Γµ(−k − p2, p2) − S−1(p2)S(p2 − `)Γµ(p1,−k − p1)

]
.

(5.12)

Notice that, in our U(1) case, one could equally well contract with `ρ all the diagrams

appearing in the decomposition of C shown in figure 6, using the WI of eq. (2.27) and

eq. (2.31); the result would be of course the same. The contraction of eq. (5.12) with kµ

can now be easily evaluated using the WI of eq. (2.27), and gives

kµ`ρCρµ(k, p1, p2) = g2
{
S−1(p1) + S−1(p2) − S−1(p1) [S(p2 + k) + S(p1 + k)] S−1(p2)

}
.

(5.13)

As explained in the general analysis carried out in the previous section, we will need

the WIs satisfied by the kernel Kρµ, and not the ones for the connected Green’s function

Cρµ. These former WIs are however easily obtained, by making use of the relation (see

figure 6)

iKρµ(k, p1, p2) = iCρµ(k, p1, p2) − iΓρ(` − p2, p2)iS(p2 − `)iΓµ(p1, p2 − `). (5.14)

Contracting with `ρ and kµ, and using eqs. (5.12), (5.13) and (2.31), we then arrive at the

desired WIs, which read

`ρKρµ(k, p1, p2) = g
[
Γµ(−k − p2, p2)S

−1(p1)S(k + p2) − Γµ(p1,−k − p1)
]
, (5.15)

kµ`µKρµ(k, p1, p2) = g2
[
S−1(k + p1) − S−1(p1)S(k + p2)S

−1(p2)
]
. (5.16)

5.2 Five particle kernel

The second case of interest for our construction is the one where n = 3 and m = 1, i.e.,

the photon–photon–photon–scalar–scalar scattering kernel, defined as
∫

d4x d4x1 d4y1 d4z1d
4z2e

i(p1·y1+p2·x1+k1·z1+k2·z2−`·x) ×

× 〈0|TJρ(x)Aβ(z1)Aγ(z2)φ
†(y1)φ(x1)|0〉i∆

(0)
ρα (`)

= i(2π)4δ4(k1 + k2 + p1 + p2 − `)C̃αβγ(k1, k2, p1, p2). (5.17)
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Proceeding in exactly the same way as in the four-particle case, and introducing the am-

putated kernel

C̃αβγ(k1, k2, p1, p2) = i∆αρ(`)i∆βµ(k1)i∆γν(k2)iS(p1)iS(p2)C
ρµν(k1, k2, p1, p2), (5.18)

we obtain the WI

`ρCρµν(k1, k2, p1, p2) = g
[
S−1(p1)S(p1 − `)Cµν(k2, p1 − `, p2)

− S−1(p2 − `)S(p2)Cµν(k2, p1, p2 − `)
]
. (5.19)

Once again, the connected kernel Cρµν is not the one that appears in the SDEs, being

related to the latter through the equation (see figure 6)

iKρµν(k1, k2, p1, p2) = iCρµν(k1, k2, p1, p2) − iΓρ(` − p2, p2)iS(p2 − `)iCµν(k2, p1, p2 − `)

− iKρµ(k1, p1 + k2, p2)iS(p1 + k2)iΓν(p1,−p1 − k2)

− iΓρν(k2, p1 + k1, p2)iS(p1 + k1)iΓµ(p1,−p1 − k1)

− iΓν(−k2 − p2, p2)iS(p2 + k2)iΓρ(k1 + p1, k2 + p2)iS(p1 + k1) ×

× iΓµ(p1,−p1 − k1). (5.20)

Contracting with `ρ, and making use of the WIs of eqs. (5.12), (5.15), (5.13) and (2.31) we

obtain, after a lengthy but straightforward calculation, the desired result

`ρKρµν(k1, k2, p1, p2) = gS−1(p1)S(p1 − `)Cµν(k2, p1 − `, p2) − gΓµν(k2, p1,−k2 − k1 − p1)

+ gΓµ(−k1 − p2, p2)S(k1 + p2)Γν(p1,−p1 − k2)

+ gΓν(−k2 − p2, p2)S(k2 + p2)Γµ(p1,−p1 − k1). (5.21)

6. PT Green’s functions from Schwinger-Dyson equations

In this section we will carry out in detail the PT construction at the level of the SDEs.

Specifically, from the SDEs shown in figures 4 and 5, we will derive the PT Green’s functions

for the scalar propagator S, the trilinear vertex Γµ, and the quadrilinear vertex Γµν .

6.1 The scalar propagator

As far as the SDE of the scalar propagator is concerned, the first step will be to isolate

all the type A and type B diagrams, on which one could implement the characteristic PT

decomposition of eqs. (3.2) and (3.4). To this end, let us start with diagram (a) of figure 4

and unwrap the full Γµ by means of its own SDE. The result is shown in the first two lines

of figure 7; clearly (a1) and (a2) are type A diagrams, while (a3), (a4), (a5) and (a6) are type

B. There are still four diagrams of type B missing: the first is obtained when unwrapping

the full four-particle vertex of (b) by substituting its SD series, retaining only the term

where the corresponding diagram (i) of figure 5 appears; the second diagram emerges when

unwrapping the full four particle vertex of (v), keeping the term in which diagram (n) of

figure 5 appears; finally, the remaining two diagrams of type B come from diagram (c),

after unwrapping the full trilinear vertex on the right, retaining from the corresponding

– 24 –



J
H
E
P
0
3
(
2
0
0
7
)
0
4
1

⊃
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(a1)

(a4) (a5)

(a3)(a2)(a)

(a6)

⊃

(c)

(b)

(c1) (c2)

(b1) (v1)(v)

Figure 7: Isolating from the SDE of the scalar self-energy all the terms providing PT amplitudes.

SDE the tree-level vertex and the diagram denoted by (d). All other diagrams contributing

to the scalar propagator are of type C, i.e., inert as far as the PT construction is concerned,

and will be left untouched. We emphasize that the above separation of diagrams in types

A,B, and C is unique and unambiguous, regardless of the possibility that one has to further

unwrap some of the full internal vertices, using their corresponding SDE. For example, the

full internal vertex Γµ appearing inside diagram (a4) may be replaced by the r.h.s. of the

SDE in figure5, forcing the appearance of a bare (tree-level) scalar-scalar-photon vertex.

This latter vertex is, however, internal, i.e. all its legs are irrigated by virtual momenta;

therefore, it is not supposed to undergo the PT decomposition, and must remain as it is.

(For the same reason, in the two-loop construction of section 3, the internal vertices in

graphs (3a), (3c), and (3d) did not furnish any pinching momenta).

At this point, one carries out on the above type A and B diagrams the usual PT

decomposition given in eqs. (3.2) and (3.4). This will generate the following terms [we use

hereafter the notation introduced previously in eq. (3.7)]

(x) = (x)FF + (x)P0 + (x)0P − (x)PP x = a1, a2

(y) = (y)F + (y)P y = a3, a4, a5, a6,b1, c1, c2, v1. (6.1)

We will now analyze separately the terms appearing in the above equations.

6.1.1 ΓPΓ(0) and Γ(0)ΓP terms

The first diagrams we will consider are those of type B. As already discussed, the strategy

for treating these diagrams consists in factoring out the ΓP vertex, and choosing the ap-

propriate combination of graphs, in order to force the appearance of a full vertex Γ on the

opposite side of the diagram. The longitudinal momentum of the pinching vertex will act

on this latter full vertex, thus triggering the corresponding WI.
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Figure 8: The rearrangement of ΓPΓ terms leading to a ΓP acting on a full Γ vertex.

In the case of the ΓPΓ the combination one needs to consider is promptly found to be

(a1)
P0 + (a2)

P0 + (a3)
P + (a4)

P + (a5)
P + (a6)

P; it gives rise to the desired full vertex Γ, on

which the ΓP will act. Specifically,

(a1)
P0 + (a2)

P0 + (a3)
P + (a4)

P + (a5)
P + (a6)

P

=

∫
[dk] iΓP

µ(−k − q, q)i∆µν(k)iS(k + q)iΓν(−q, k + q)

= −g

∫
[dk]

1

k2
S(k + q)kνΓν(−k,−q)

= −g2

∫
[dk]

1

k2
S(k + q)

[
S−1(k + q) − S−1(q)

]

= −iG(q)S−1(q). (6.2)

In obtaining the above expression we have used the WI of eq. (2.27), the SDE for the

auxiliary function G of eq. (2.40), together with the dimensional regularization result of

eq. (3.8).

For the symmetric term ΓΓP the combination one needs to consider is different, and

reads (a1)
0P + (a2)

0P + (b1)
P + (c1)

P + (c2)
P + (v1)

P, as shown in figure 8; however, the

result is the same, and the latter combination will give rise to the mirror contribution of

the one just calculated. Therefore one has the result

(a1)
P0 + (a2)

P0 + (a3)
P + (a4)

P + (a5)
P + (a6)

P

+ (a1)
0P + (a2)

0P + (b1)
P + (c1)

P + (c2)
P + (v1)

P = −2iG(q)S−1(q). (6.3)

6.1.2 ΓPΓP terms

Type A diagrams (a1)
PP and (a2)

PP are of central importance in our construction, since,

among other things, they must generate dynamically the BFM ghost sector, exactly as

happened in the two-loop example of section 3.

Of these two diagrams, (a1)
PP gives simply

(a1)
PP =

∫
[dk] iΓP

µ (−k − q, q)i∆µν(k)iS(k + q)iΓP
ν (−q, k + q)
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(a2)
PP =

ΓP

µ
ρ

σ

Kρσ
ΓP

ν

Figure 9: Feynman diagram corresponding to the term (a2)
PP.

= −g2

∫
[dk]S(k) = (6.4)

and thus generates an effective seagull-like contribution; it will be combined later with

diagram (w) of figure 4, in order to provide the graph ŵ.

The second term, (a2)
PP, is shown in figure 9, and reads

(a2)
PP =

∫
[d`]

∫
[dk] iΓP

µ (−` − q, q)i∆µρ(`)iS(` + q)iKρσ(k,−k − q, ` + q)

× iS(k + q)i∆σν(k)iΓP
ν (−q, k + q)

= −ig2

∫
[d`]

∫
[dk]

1

`2

1

k2
S(` + q)S(k + q)`ρkσKρσ(k,−k − q, ` + q). (6.5)

We thus see how the SD kernel Kρσ, studied in detail in section 5, makes its appearance.

Using the WI of eq. (5.16), and the SDE for the auxiliary function G of eq. (2.40), we find

(a2)
PP = ig4

∫
[d`]

∫
[dk]

1

`2

1

k2
S(` + k + q) − ig4

∫
[d`]

∫
[dk]

1

`2

1

k2
S(` + q)S(k + q)S−1(q)

=
c

c̄

+ iG2(q)S−1(q). (6.6)

where we have recognized that the first term on the r.h.s. of (6.6) is exactly the one

needed to generate the BFM ghost sector, whereas the second contributes to the non-

perturbative BQI of (2.39). Actually, it is instructive to recognize that this latter term is

intimately connected with the perturbative rearrangement of the 1PR diagrams, referred to

as “strings”, i.e. all possible products of lower order self-energies, appearing when expanding

perturbatively ∆µν to a given order. In [44, 28] it has been shown that in QCD, the terms

one needs to add to convert a string of order n (in g2) containing more than three self-

energy insertions, into a PT string, will be canceled by other strings of the same order, but

containing a different number of insertions; the only case where this cancellation will not

take place is when the string has exactly two (S
(n)
2 ) or three (S

(n)
3 ) self-energy insertions.

Specializing these results to the case at hand, one has

S
(n)
2 → Ŝ

(n)
2 + 2

n∑

i=1

G(n−i)S−1,(i) +

n∑

i=1

G(n−i)S−1,(0)G(i) + 4

n−1∑

i=2

i−1∑

j=1

G(n−i)S−1,(j)G(i−j)

S
(n)
3 → Ŝ

(n)
3 − 3

n−1∑

i=2

i−1∑

j=1

G(n−i)S−1,(j)G(i−j), (6.7)
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and therefore the contribution coming from the string conversion that must be added to

the PT self-energy will be

S
(n) = 2

n∑

i=1

G(n−i)S−1,(i) +
n−1∑

i=1

i−1∑

j=0

G(n−i)S−1,(j)G(i−j), (6.8)

or, to all orders,

S = 2GS−1 + G2S−1. (6.9)

Of these two terms the first will cancel against an equal (but opposite in sign) contribution

coming from the usual PT construction carried out on the 1PI diagrams, while the second

one – which, up to an immaterial i factor is the second term of eq. (6.6) – represents the

genuine string contribution.

6.1.3 The ΓFΓF terms and the final rearrangement

We finally consider the ΓFΓF, i.e., (a1)
FF, (a2)

FF, (a3)
F, (a4)

F, (a5)
F, (a6)

F, (b1)
F, (c1)

F,

(c2)
F (v1)

F.

First of all, notice that in the BFM the only Feynman rules different from the normal

Rξ ones (excluding the ghost sector) are those involving the φ̂Aµφ† and φ̂φ̂†φφ† vertices;

for them we have (see also the appendix)

iΓbφAµφ†(q,−p1) = 2igp2µ = iΓF(q,−p1),

iΓbφbφ†φφ†(k, p1, p2) = i(λ − g2). (6.10)

Now, one should realize that our procedure has systematically replaced all of the scalar-

scalar-photon vertices with ΓF, effectively converting (as far as the Feynman rules de-

scribing their interactions are concerned) the external legs, φ and φ†, into background

ones, φ̂ and φ̂†. Since for the remaining diagrams the external legs can be converted into

background ones for free, we find

(a1)
FF + (a2)

FF + (a3)
F + (a4)

F + (a5)
F + (a6)

F = (â), (6.11)

and

(b1)
F + . . . = (b̂),

(c1)
F + (c2)

F + . . . = (̂c),

(v1)
F + . . . = (v̂), (6.12)

where the ellipses denote all other terms appearing in the corresponding SDEs (i.e., the

missing terms on the r.h.s. of the second and third line of figure 7). Summarizing, the PT

procedure has enforced the following identity [recall that the ΓPΓP terms appear with an

extra minus sign, see eq. (3.4)]

iS−1(q) = −2iG(q)S−1(q) − iG2(q)S−1(q)

+ g2

∫
[dk]S(k) + ig4

∫
[d`]

∫
[dk]

1

`2

1

k2
S(` + k + q)

+ (â) + (b̂) + (̂c) + (v̂) + (w) + (z). (6.13)
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The first two terms corresponds to the last two of the BQI of eq. (2.39). The third term

can be added to the diagram (w) to get

(w) + g2

∫
[dk]S(k) = i(λ − g2)

∫
[dk] iS(k) = (ŵ). (6.14)

Moreover

ig4

∫
[d`]

∫
[dk]

1

`2

1

k2
S(` + k + q) =

φ̂ φ̂†

φ
c

c̄

= (x̂), (6.15)

while, finally, (z) ≡ (̂z).

Therefore, we find

iS−1(q) = −2iG(q)S−1(q) − iG2(q)S−1(q) +

{
(â) + (b̂) + (̂c) + (v̂) + (ŵ) + (x̂) + (̂z)

}

= −2iG(q)S−1(q) − iG2(q)S−1(q) + iŜ−1(q), (6.16)

which is exactly the BQI for the scalar self-energy.

6.2 The trilinear vertex

The construction of the PT vertices is in general significantly easier than the one carried

out for the scalar propagator, due to the fact that there are no type A diagrams. In

particular, for the case of the trilinear vertex Γµ only one type B diagram needs to be

taken into account, namely diagram (d) of figure 5. One has then

(d)P =

∫
[d`]iΓP

ν (−q − `, q)i∆νρ(`)iS(q + `)iKρµ(k, p1, ` + q)

= −g

∫
[d`]

1

`2
S(q + `)`ρKρµ(k, p1, ` + q)

= g2

∫
[d`]

1

`2
S(q + `)Γµ(p1,−k − p1)

− g2

∫
[d`]

1

`2
S(` + q)S(k + ` + q)Γµ(−k − ` − q, ` + q)S−1(p1)

= −iG(q)Γµ(p1, q) − iGµ(q, p1)S
−1(p1), (6.17)

where we have used the WI of eq. (5.15). All other diagrams appearing in the SDE for the

trilinear vertex are of type C, and remain unchanged; in that sense one can freely replace

the external scalar leg with a background one, to get

iΓµ(p1, q) = −iG(q)Γµ(p1, q) − iGµ(q, p1)S
−1(p1) +

{
(d)F + (̂e) + (̂f) + (ĝ) + (ĥ)

}

= −iG(q)Γµ(p1, q) − iGµ(q, p1)S
−1(p1) + iΓ̂µ(p1, q), (6.18)

which is exactly the BQI of eq. (2.43).
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6.3 The quadrilinear vertex

As the last step we will construct the PT quadrilinear vertex. Again, we have only one

type B diagram that can give pinching contributions, namely diagram (i); its longitudi-

nal momentum acting on the five particle kernel Kρµν will trigger the corresponding WI,

eq. (5.21). One has

(i)P =

∫
[d`]iΓP

ν (−q − `, q)i∆νρ(`)iS(q + `)iKρµν(k1, k2, p1, ` + q)

= −g

∫
[d`]

1

`2
S(q + `)`ρKρµν(k, p1, ` + q) =

4∑

m=1

(i)Pm, (6.19)

Each (i)Pm represents a term in the WI of eq. (5.21) which reads

(i)P1 = g2

∫
[d`]

1

`2
S(` + q)Γµν(k2, p1, q) = −iG(q)Γµν(k2, p1, q)

(i)P2 = g2

∫
[d`]

1

`2
S(` + q)S(p1 − `)Cµν(k2, p1 − `, ` + q)S−1(p1)

= −iGµν(k2, ` + q, p1)S
−1(p1)

(i)P3 = −g2

∫
[d`]

1

`2
S(` + q)Γµ(−k1 − ` − q, ` + q)S(k1 + ` + q)Γν(p1,−p1 − k2)

= −iGµ(q, k2 + p1)Γν(p1,−p1 − k2)

(i)P4 = −g2

∫
[d`]

1

`2
S(` + q)Γν(−k2 − ` − q, ` + q)S(k2 + ` + q)Γµ(p1,−p1 − k1)

= −iGν(q, k1 + p1)Γµ(p1,−p1 − k1). (6.20)

For all the other (type C) diagrams appearing in the SDEs for the quadrilinear vertex,

one can replace the external φ line with the corresponding background one φ̂ without

introducing new terms in the equation. Using the results above, we finally arrive at the

following equation

iΓµν(k2, p1, q) = −iG(q)Γµν(k2, p1, q) − iGµν(k2, ` + q, p1)S
−1(p1)

− iGµ(q, k2 + p1)Γν(p1,−p1 − k2) − iGν(q, k1 + p1)Γµ(p1,−p1 − k1)

+ (i)F + (̂j) + (k̂) + (̂l) + (m̂)

= −iG(q)Γµν(k2, p1, q) − iGµν(k2, ` + q, p1)S
−1(p1)

− iGµ(q, k2 + p1)Γν(p1,−p1 − k2) − iGν(q, k1 + p1)Γµ(p1,−p1 − k1)

+ iΓ̂µν(k2, p1, q), (6.21)

which is exactly the BQI satisfied by the quadrilinear vertex, eq. (2.47).

6.4 Renormalization issues

So far we have succeeded in converting the original SD series into an equivalent one, where

the external fields have been substituted by their background counterparts. The procedure

used has been divided in two steps: ( i) carry out the PT algorithm on the (bare) SD series

and (ii) compare the result with the BQI satisfied by the (bare) Green’s function under
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scrutiny. A question that rises naturally in this context is whether this entire procedure is

preserved by renormalization.

To answer this question, one should realize that the BQIs are a direct consequence

of the original BRST symmetry of the theory; therefore, within a suitable regularization

scheme, such as dimensional regularization, they will be preserved by renormalization,

for the same reason that the STIs do not get deformed. Notice that this is completely

different from the case of the Nielsen identities [41], describing the gauge fixing parameter

dependence of the bare Green’s functions. In this latter case, one needs to extend the

BRST symmetry to include the variation of the gauge fixing parameter. This, in turn, will

spoil the original BRST invariance of the theory, implying that the latter identities get

deformed by renormalization already at the one-loop level [45].

To study an explicit example on how renormalization works for the BQIs, let us consider

the renormalization of the two point function. On the one hand we clearly have

S−1
R (gR, λR,m2

R;µ) = ZφS−1(g, λ,m2;µ, ε)

Ŝ−1
R (gR, λR,m2

R;µ) = Zbφ
Ŝ−1(g, λ,m2;µ, ε). (6.22)

On the other hand, the function G̃ ≡ 1 + G (where the 1 should be considered as its

tree-level value, G̃(0) ≡ 1) renormalizes multiplicatively as

G̃R(gR, λR,m2
R;µ) = Z eG

G̃(g, λ,m2;µ, ε). (6.23)

Notice, however, that Z eG
will not be an independent renormalization constant, because,

due to the BQI of eq. (2.39), its value is determined in terms of Zbφ
and Zφ; specifically,

Z eG
= Z

1

2

bφ
Z

− 1

2

φ . (6.24)

To check the validity of this result at lowest order, we can carry out explicitly, at

one-loop, the renormalization program for the relevant two-point functions.

The one-loop expansion of eqs. (6.22) and (6.23) reads

Σ
(1)
R (gR, λR,m2

R;µ) = Σ
(1)
R (gR, λR,m2

R;µ, ε) + Z
(1)
φ (q2 − m2

R) − Z
(1)
m2m

2
R

Σ̂
(1)
R (gR, λR,m2

R;µ) = Σ̂
(1)
R (gR, λR,m2

R;µ, ε) + Z
(1)
bφ

(q2 − m2
R) − Ẑ

(1)
m2m

2
R

G̃
(1)
R (gR, λR,m2

R;µ) = G̃(1)(g, λ,m2;µ, ε) + Z eG
, (6.25)

while the one-loop divergent parts for the quantum and background two point functions,

and the auxiliary function G, are given by

Σ(1)(g, λ,m2;µ, ε) = −
4

(4π)2 ε
g2q2 −

2

(4π)2 ε
m2

(
λ + g2

)
+ . . .

Σ̂(1)(g, λ,m2;µ, ε) = −
8

(4π)2 ε
g2q2 −

2

(4π)2 ε
m2

(
λ − g2

)
+ . . .

G̃(1)(g, λ,m2;µ, ε) = −
2

(4π)2 ε
g2 + . . . , (6.26)
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where the ellipses denote finite parts. Combining these results we get

Z
(1)
φ =

1

4π2ε
, Z

(1)
bφ

=
1

2π2ε
g2,

Z
(1)
m2 ≡ Ẑ

(1)
m2 = −

1

8π2

(
λ + 3g2

)
, Z

(1)
eG

=
1

8π2ε
g2, (6.27)

which shows that

Z
(1)
eG

=
1

2

(
Z

(1)
bφ

− Z
(1)
φ

)
, (6.28)

as expected. We end by noticing that the equality between the one-loop mass renormaliza-

tion constants for quantum and background scalar was to be expected, at least due to two

reasons: (i) the scalar and the PT (background) two-point functions differ by the pinch

contributions, which are all proportional to (q2 − m2); (ii) G has engineering dimension

zero, and thus can give rise to only one independent renormalization constant.

7. Discussion and Conclusions

In this article we have presented for the first time the extension of the PT at the level of the

SDE. Specifically, we have carried out explicitly the PT procedure for the SDEs governing

the dynamics of the two- and three-point functions in scalar QED. This Abelian theory

has non-trivial properties under the pinching action, due to the simple fact that, unlike

normal QED, the fundamental interaction vertex between a pair of charged scalars and

a photon depends on the momentum of the incoming scalars. This in turn activates the

pinching procedure, and gives rise to a set of modified effective Green’s functions, which

coincide with the BFM Green’s function computed in the Feynman gauge, to all orders

in perturbation theory. The extension of this procedure beyond fixed-order perturbation

theory requires certain operational adjustments, as discussed here in detail, but does not

introduce additional assumptions. The main result of this paper is that the application

of the PT algorithm on the SDEs for the conventional Green’s functions in the usual

covariant gauges generates dynamically the SDEs governing the BFM Green’s functions.

This conversion of one set of SDE to another is highly non-trivial, given that the Feynman

rules and the associated ghost sector is very different within these two gauge-fixing schemes.

As has been emphasized in the Introduction, the upshot of the PT approach is to

eventually furnish a self-consistent truncation scheme for the SDEs of gauge theories. It is

therefore important to briefly comment why the new SDEs obtained through pinching are

superior to the conventional ones, and how one should proceed to solve them. The construc-

tion carried out here essentially makes manifest extensive all-order rearrangements between

the various terms in the SDEs, giving rise to radically different structures. The ensuing

massive cancellations are responsible for the special properties of the new PT Green’s func-

tions; instead, in the conventional SDE expansion the consequences of these rearrangments

are obscured, or even distorted, by casual truncations of the series. In fact, the advan-

tages of the new Schwinger-Dyson series can be best exemplified in the case of QCD itself.

Specifically, one of the most distinct features of the PT-BFM scheme is the special way in

which the transversality of the background gluon self-energy is realized. In particular, the
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study of the non-perturbative, SD-type of equation obeyed by the latter quantity reveals

that, by virtue of the Abelian-like WIs satisfied by the vertices involved, the transversality

is preserved without the inclusion of ghosts [35]. Thus, gluonic and ghost contributions

are separately transverse. Moreover, transversality is enforced without mixing the orders

in the usual “dressed-loop” expansion: the “one-loop-dressed” and “two-loop-dressed” sets

of diagrams are independently transverse. This is to be contrasted with what happens in

the usual gauge-fixing scheme of the covariant renormalizable gauges, where the inclusion

of the ghost is crucial for the transversality of the gluon self-energy already at the level of

the one-loop perturbative calculation. The importance of this property in the context of

SDE is that it allows for a meaningful first approximation: instead of the system of cou-

pled equations involving gluon and ghost propagators, one may consider only the subset

containing gluons, without compromising the crucial property of transversality. Turning to

the second question, one may proceed to solve the new SDEs following two, conceptually

equivalent but operationally distinct, approaches. For example, in the case of the scalar

propagator considered in this article, one may continue treating S(q) as the unknown dy-

namical variable, solve the new SD equation in terms of S(q), substitute S(q) into (2.40)

to obtain G(q), and subsequently use the BQI of (2.39) to construct Ŝ(q). Alternatively,

one may regard from the beginning Ŝ(q) as the new dynamical variable, and use (2.39)

to substitute everywhere on the r.h.s. of the corresponding SDE S(q) in favor of Ŝ(q). It

remains to be seen which of these two approaches will turn out to be logistically more

expeditious.

In our opinion the most relevant conceptual contribution of this article is the identifi-

cation of the precise procedure that must be followed when pinching SDEs, together with

the necessary field-theoretic ingredients that one needs to employ. Despite the fact that we

have restricted our attention to scalar QED in the unbroken phase, the procedure described

should carry over, up to some additional book-keeping complications to the broken phase

of the theory, i.e. when the scalar field develops a non-vanishing vacuum expectation value,

v, endowing the photon with a mass and adding a Higgs scalar into the physical spectrum.

In that case, the object of interest for the PT construction is the effective propagator of

the Higgs boson, ∆̂H , and the possibility of constructing the non-perturbative version of

the (Abelian) Higgs effective charge v2∆̂H , presented in [24]. In addition, and more im-

portantly, the present work sets up the stage for the generalization of the method in a

non-Abelian context, and especially in QCD.

Turning to this important issue, we expect that, as far as the general methodology

is concerned, the extension of this work to the case QCD should go through with no

additional modifications. From the technical point of view, however, one needs to overcome

several obstacles. In particular, as has become obvious by the analysis presented here, one

needs to use the result of the contraction of the pinching momenta on the 1PI three-point

functions and kernels. In the cases considered here, the Abelian nature of the theory

gave rise to simple expressions for the WI needed, whose derivation, although laborious at

times, proceeded following textbook techniques. In the case of QCD the object of central

interest will be the gluon self-energy; the upshot of the PT construction will consist in

transforming its SDE into the corresponding SDE for a background gluon. As is known
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= ig(k + k′)µ

k′

k

φ†

φ

Aµ

= 2igkµ

k′

k

φ†

φ̂

Aµ

φ

= 2ig2gµν

Aµ

φ†

Aν

φ φ†

φ†φ

= iλ

φ

Aµ

φ†
= i

k2−m2

= − i
k2

[
gµν − (1 − ξ)kµkν

k2

]

Aν

φ̂†φ̂

= i(λ − g2)

φ†φ

φ†φ̂

= −ig2

cc̄

Figure 10: Feynman rules for scalar QED used in the calculations both in the Rξ as well as the

BFM Feynman gauge.

from the perturbative all-order construction of the gluon self-energy, one of the necessary

ingredients for accomplishing this is the STI for three-gluon vertex, derived in the classic

work by Ball and Chiu [46]; in the language of our Abelian theory this STI would be the

direct analogue of eq. (2.27). In addition, however, one needs the STI satisfied by the QCD

analogue of the kernel Cµν , namely the 1PI kernel with four off-shell gluons; to the best of

our knowledge this result does not exist in the literature. Whereas a derivation using some

of the techniques reviewed here, or those of [47], may furnish the analogue of eq. (5.12)

for the four-gluon kernel, it is not clear whether the result will be expressed in terms of

quantities (e.g., auxiliary ghost Green’s functions) that could be directly connected to those

appearing typically in the PT construction. This difficulty may be further compounded by

the fact that in QCD the ghost sector is interacting, and therefore the auxiliary functions

appearing in the corresponding BQI have a much more complicated structure than the

G, Gµ, and Gµν , defined in eqs. (2.40), (2.45), and (2.48), respectively. Thus, in the

corresponding equations instead of bare ghost propagators and vertices we will have fully-

dressed ones. In addition, the simple WI of eq. (2.49) will be most certainly replaced

by more involved expressions. Despite the technical complications mentioned above, we

believe that the extension of the present work to QCD lies well within our reach, and hope

to be able to present it in the near future.
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A. Feynman rules

The Feynman rules for scalar QED (both in the Rξ and the BFM Feynman gauge) needed

for the calculations carried out in the paper are listed in figure 10. As already put forward

in the paper, in order to obtain the full set of Feynman rules in the BFM gauge, one needs

not only the gauge-fixing and Faddeev-Popov terms of eq. (2.14) but also the extra terms

coming from the background-quantum splitting φ → φ̂ + φ carried out inside the gauge

invariant Lagrangian (2.2). The terms in which we are interested reads (in the Feynman

gauge)

L̂ ⊃ −2igAµ

(
φ∂µφ̂† + φ†∂µφ̂

)
+

(
λ − g2

)
φ̂†φ̂φ†φ − g2c̄c

(
φ̂†φ + φ̂†φ

)
, (A.1)

and provides the Feynman rules shown above.

As far as the auxiliary functions are concerned the Feynman rules needed for their

calculation can be obtained as follows.

1. For the BRST source terms they can be read directly from the BRST source la-

grangian

LBRST =
∑

Φ

Φ∗sΦ ⊃ A∗
µ∂µc + igφ∗†cφ − igφ∗cφ†. (A.2)

Notice that the fact that A∗
µ has no interaction other than the one proportional to the

derivative of its ghost field shown above, will enforce that the 1PI two point function

ΓcA∗
µ
(q) is simply −qµ to all orders.

2. For the background source terms one starts from the general identity

LGF + LFPG = sΨ, (A.3)

with Ψ the gauge fixing fermion

Ψ = c̄

(
ξ

2
B + F

)
. (A.4)

Then if F is the background gauge fixing function of eq. (2.12) and we take into

account the extended BRST transformations of eq. (2.32) we get (in the Feynman

gauge)

sΨ ⊃ igc̄Ωφ†

φ − igc̄Ωφφ† (A.5)

The corresponding Feynman rules for both BRST and background field sources are

given in figure 11.

φ∗
φ∗†

c

φ†

c

φ

= g = −g

Ωφ Ωφ∗†

c̄

φ†

c̄

φ

= −g = g

Figure 11: Feynman rules for the interactions involving BRST and BFM sources.
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